Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 888: 164123, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37182772

RESUMO

Process-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmental factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches. In addition, we used 3-PG and Biome-BGCMuSo process-based models to compare growth predictions with derived empirical models. Results revealed similar prediction errors (RMSE) across models ranging between 3.71 and 7.54 cm2 of basal area increment (BAI). The models explained most of the variability in BAI ranging from 54 % to 87 %. Selected explanatory variables (despite being statistically highly significant) and the pattern of the growth sensitivity differed between models substantially. We identified only five factors with the same effect and the same sensitivity pattern in all empirical models: tree DBH, competition index, elevation, Gini index of DBH, and soil silt content. However, the sensitivity to most of the climate variables was low and inconsistent among the empirical models. Both empirical and process-based models suggest that beech in European mountains will, on average, likely experience better growth conditions under both 4.5 and 8.5 RCP scenarios. The process-based models indicated that beech may grow better across European mountains by 1.05 to 1.4 times in warmer conditions. The empirical models identified several drivers of tree growth that are not included in the current process-based models (e.g., different nutrients) but may have a substantial effect on final results, particularly if they are limiting factors. Hence, future development of process-based models may build upon our findings to increase their ability to correctly capture ecosystem dynamics.


Assuntos
Ecossistema , Fagus , Mudança Climática , Florestas , Árvores
2.
Open Res Eur ; 3: 32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288290

RESUMO

Ecology and forestry sciences are using an increasing amount of data to address a wide variety of technical and research questions at the local, continental and global scales. However, one type of data remains rare: fine-grain descriptions of large landscapes. Yet, this type of data could help address the scaling issues in ecology and could prove useful for testing forest management strategies and accurately predicting the dynamics of ecosystem services. Here we present three datasets describing three large European landscapes in France, Poland and Slovenia down to the tree level. Tree diameter, height and species data were generated combining field data, vegetation maps and airborne laser scanning (ALS) data following an area-based approach. Together, these landscapes cover more than 100 000 ha and consist of more than 42 million trees of 51 different species. Alongside the data, we provide here a simple method to produce high-resolution descriptions of large landscapes using increasingly available data: inventory and ALS data. We carried out an in-depth evaluation of our workflow including, among other analyses, a leave-one-out cross validation. Overall, the landscapes we generated are in good agreement with the landscapes they aim to reproduce. In the most favourable conditions, the root mean square error (RMSE) of stand basal area (BA) and mean quadratic diameter (Dg) predictions were respectively 5.4 m 2.ha -1 and 3.9 cm, and the generated main species corresponded to the observed main species in 76.2% of cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...